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ABSTRACT

This paper considers the time dependent Stefan problem with convection in

the fluid phase governed by the Stokes equation, and with adherence of the

fluid on the lateral boundaries. The existence of a weak solution is obtained

via the introduction of a temperature dependent penalty term in the fluid flow

equation, together with the application of various compactness arguments.
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SIGNIFICANCE AND EXPLANATION

Consider a phenomenon (such as melting of ice) where there is a change of

phase, say liquid-solid. In the liquid phase the thermal energy is

transported both by diffusion and convection, and the effects of convection

are reflected in the movement of the free-boundary separating the two phases.

n ihs paper we show:that such a problem can be formulated

mathematically and that it admits a solution in a weak sense.

w /lso investigatasome local regularity properties of the distribution

of temperature and the field of velocities in the liquid phase.

Accssion For

The responaibi'ity for the wording and views' expressed in this descriptive
susunary lies with INtC, and not with the authors of this report.
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THE BZDINESKIOL STYFAJN PRODL4 1ITH CONVSCTIONs THE TINE-DEPENDENT CASE

J. R. Cannon
(1 ), a. DiJenedetto

( 2 ) and G. M. Knightly
(3 )

1 * INTRODUCTION

The ain of this paper is to extend to the nonstationary case some results obtained by

the authors in [5, 63, about the Stefan problem with convection.

We briefly describe the physics of the phenomenon, referring to section 2 for a

precise mathematical formulation.

Suppose that in a region 2 of , N ; 2 a liquid undergoes a change of phase at a

fixed temperature. The model example we have in mind is a water-ice situation. At every

time t the liquid and solid phases are determined by the knowledge of the distribution of

temperature. We call u ( 1 ) the temperature in the liquid and u ( 2) the temperature in

the solid. in general, in the liquid region there are present convective motions

originated by body forces I depending on the temperature u0). The dynamic state of the

liquid is determined by the knowledge of the field of velocities v and the pressure p.

The diffusion of heat in the liquid is affected by the velocity v, and in turn v point

by point is affected by the buoyancy forces 1(u ( 1 ) ) .

We will describe the phenomenon of diffusion in the liquid phase by the evolution

equation

(1.1) at61(u -div kI(u )Vu +

where Y1 ,'), and kO() represent heat capacity and conductivity respectively and are

possibly nonlinear functions of the temperature um
. The term vV*x6 (u)) gives a

description of how the velocity v effects the temperature um
.

(
1
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The convection wll be modeled by the system of Stokes equations

(1.2) -' v* - vA; + Vpy - r

where v is the kinematic viscosity, p the pressure and f(u
(
c)) the buoyancy forces.

The two equations (1.1)-(1.2) represent the classical Boussinnesq coupling of thermal

diffusion and convection [15].

We assume the liquid is incompressible (div v - 0). Moreover since it is viscous

(v > 0) and since we assume that the solid phase is at rest, it is reasonable to assume

v = 0 on the boundary of the liquid region.

In the solid phase there is only a diffusion process described by an equation like

(.1) without the term involving the velocity, since we assume zero velocity for the solid

phase.

We assume the distribution of temperatures u
( 
), u

(2 ) 
and the field of velocities

are known at some initial time t = 0, and on the boundary 00 of 3 we prescribe at

every time t the heat flux g, which is a possibly nonlinear function of the

temperature.

At the unknown boundary r separating the two phases we impose the relation

u(1) u (2) _ 0 and

[kl(u(1))Vxu
(l ) 

- k 2 (u (2))Vu(2)].N x = LNt

where N 2 (Nx,Nt) is the unit normal to F directed toward the solid phase. Such a

relation measures, roughly speaking, the amount of heat used in the melting process and

L represents the latent heat of fusion.

The problem consists in determining at every time t, the distribution of

tempetatures, the field of velocities, the pressure and the configuration of the system.

Our purpose is to show that such a problem for the spatial dimension N - 2 admits at

least a solution, in a sense to be made precise below.

We comment here on the restriction N - 2, and on the difficulties of extending the

results of 15, 6] to the timeo-dependent situation.

-2-
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Since the Stokes equations have to hold only in the liquid region, one has to have

some topological information on the set occupied by the fluid, in order to give a

meaningful interpretation to the field of velocities. For exeaple one should know that

such a set is open to view the Stokes equations at least in the sense of distributions over

such a set. This information would be implied by the continuity of the temperature which

in turn depends on the smoothness of v. It turns out that only for N - 2 are we able to

show that the degree of smoothness of v, muffices to yield the continuity of u.

This delicate interplay between the regularity of u and the regularity of , has

also prevented us from using the Ravier-Stokes equations

v - V& + (v V) v + Vf

in the place of (1.2).

The limitations are quite clearly of technical nature and it is our hope to remove

them in the future.

Also it should be pointed out that at this stage, uniqueness is an open question.

Sections 2 and 3 contain the classical formulation of the problem, notation and some

preliminary material. The concept of weak solution is introduced in Section 4, whereas

Section 5 is devoted to a listing of the assumptions and a statement of the results. In

Section 6 we prove our theorem by assuming certain facts (Propositions 6.1, 6.2,), which

are demonstrated in Sections 7, 8.

It is a pleasure to acknowledge conversations with Prof. B. Benjamin and W. Pritchard,

on the physics of the problem.

2. FORMLATION OF ThE PRO BLM

Let Q be a bounded domain in a
2 

with smooth boundary 30. For all t e (0,T],

T Y 0 let Q(t) 3 A x (t), WO(t) - 32 x (t) and Qt - U D(T). We denote with ;q3t < Tft

the parabolic boundary of £ T i.e.

a T 0(Ou) U , T -a T at).

-3-



1.

The et 0 is divided into 9 and 0 by the free boundary r S r U r(t)
T 1 2T ft4O4tQ

where (t) is a hypersurface in a(t) determined implicitly by (xet) - 0. The

function # e C I(), # < 0 on 01, 0 > 0 in a2  and JVt 0* 0 on r. Here VT x x

denotes the gradient operator with respect to the space variables x i (x1 ,x 2 ) only.

The set r(O) divides the initial region 0(0) into two regions 2 (0) and a2(o).

We set S - 0, A ST and denote with N the outward normals to Si.

Consider the problem of determining the real valued functions #, u M 0 1 R, a

+ 2vector valued v OT * . and p : 91 + R, satisfying

(2.1) 3 (U ) div k i (C) ( M. )() - 0 in i - 1,2

j -ka(u M Mi~ +M u v* u

(2.2) -k (u1 i))Vy(C)oN(i) - g(x,t~u(i)), (x,t) e Sio i 1 1,2

(i)) i

(2.3) u (x,O) " u0  (W), x e ai(0 ) , (-1)u W x) 0

(i)
110 IrC0) 0

(2.4) [k (u(1))Vu(1) - k (U (2))VxU(2)]-Vx# Lft, (x,t) e r

(2.5) at* V4 + Vxp- (~~ in 01

(2.6) .0 on

(2.7) v(x,O) - v0(X), x e a1(O), div v0 - 0

Vo(x) S 0, xe (o)

(2.8) div v - 0

(2.9) v(x,t) - 0 a.e. in 02

-4-
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Here the latent heat L is a known positive constant, g±(xet,C), L - 1,2 are know

functions of their arguments and 1(.) is a given vector valued function mapping R into

I 2 . Also aA(I). ki(*) are smooth functions defined for (-I) ( a 0 and such that there

exists constants Y0 , Y1 for which

(2.10) 0 <o < 'a., k (s) < 1' i - 1,2

v a e it, (-1)is C 0.

In order to formulate the problem in a simple fashion we make a change of the unknowns

as follows. First note that by their physical nature the heat capacities a e (,) are

continuous, monotone increasing and coercive functions of their arguments which can be

defined so that a1(0) - 0, 1 - 1,2. Therefore the knowledge of ai(u ) determines

UM uniquely. Then we define

a ) ( inQI

a 2 (u l(2)) in 92

u2

S k(o7 ())al (C)dC u > 0

00K(u)=

fu k2(G-2 (O),, it(O)dc u 0

0 - 2 2

a -;(u0x)) in 21(0)

u° Wx) - ( ) ) in 1 o)

Ix(Xgt,7 tl(u)) (xt) a s,
glt-u)5-

g(x't,*7I.lul) Ix't) 0 S2



The equations for u"), 1 1,2 can be formally rewritten an

ju AK~u) + 1 0i

-vK(u)*N - g(x't'u), (it) a ST

u(xO) U W0 x, x a 2(0)

u(x't) =0 (ilt) a r

[VK(u)]4 + ( K(u)] }*V 0 L#t (x,t) a r

where (VxK(u)]+ denotes the limit from Q1, an (x,t) approaches r, while t(u)1

denotes the limit from 0
2

As for the velocities, setting (u 1
1'(U)), we can rewrite (2.5) as

(2.5)' a. -V~ +V f~)i
at v+~=() i 1

In order to formulate our notion of weak solution of (2.11), (2.5)', (2.6)-(2.9), we

need to introduce some basic notation.

3.* NOT2ATION AND FUNCTION SPACES

In this section we give a brief description of the function spaces employed and recall

basic facts, known from the literature, to be used as we proceed.

For q,r )- I let L qr(Q0 ) denote the flanach space of those measurable functions

mapping a T + with norm defined by

TT

(3.1) l ul r -f luir dT
q, T q*Q(r)

where

-6-



lull - f IU(XT)I% •

When q - r 2, L212 (a ) coincides with the Hilbert space L2 (0) whome 1nnr prod .t

generates the norm 1.12 0T * 2 g T If q - r we get

IUlq q# T - lUlq T•.

Let Wt1'0 ( ) denote, for p ) 1, the Banach space with norm
p T

(3.2) IP - ,uP . u~pW 1,0 (aT 4. a T xP0 T

where

IV up f IVuPdxx P . 2T  ' ' T

and 1" here denotes the euclidean length of a vector in R2.

If p - 2, W2 0(a ) is the Hilbert space with inner product

(3.3) (u.-) - uV) 2.0
+ L , (:xi )'x l2O

2 T

(3.3) (uw) 1 .( (U'w W, du ( w~)
2,1 (r) 2 OT

2 (a 2 T ?
With W2Irlp(a we denote the Hlbert space with inner product

2 T

(3.4) (uft) w sr o ( 1,0 a. t ()2,tTw2  1 T )  2  1 T )

au au
Here --. , denote generalized derivatives. These definitions are modified in the usual

wa f q,r,p are infinity. For p ;0 2 let p 0(a T) , be the subpace of V p 0(11T ) Of

those functions whose trace on 311(t) vanishes for a.*. t 9J (0#T]. Also lot V2,p (QT )

denote the Banach space with norm

(3.5) IlIv2,P(T) - e(sT : sup lul2,20(t) + IVxpul p'Q

-7-
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with ;2,p(2 T) we denote the subspace of those functions in V2,p(QT ] whose trace on

3Q(t) is zero for a.e. t 0 10,T]. If p - 2 we denote V 2,2 (T) and V 2,2(aT)

respectively by V2 (T ) ( T).

Let V (a ) ((a )) denote the subspace of W'(a ) (°1 0( )) of those
2 T 2 T 2 T 2 T

functions for which the maps t + lul 2,0(t) are continuous, and with norm defined by (3.5)

with p - 2 and the "essO deleted. We will use vector valued versions of these spaces by

making the following convention. If X(QT ) is any one of the spaces defined and
T

: aT + I 2 , by v 0 X( T) we mean that each component of v belongs to X(2T).

Also if u a X(Q) for every cylindrical domain Q C T we write u 6 X l°(aT.

The proof of the following embedding lemma can be found in [11.

Lea 3.1s Let Q E 1ex(tlt 2 ), where 2' C 2 and 0 < t 1 < t 2 ( T, be a cylindrical

N+1
domain in t 1. There exists a constant C depending only upon the dimension NpO

S

and meass Q = IQ such that if u e v2,p(Q), then

lul rsaQ 4 C(puV, Qllul2,p(Q) I

where r,s A I are connected by the relation

1 21 N
s (Np + 2p - 2N)r (Np + 2p - 2N)

and

r e [2, Np ], [p,-1, for N > p > 2-
NN+2

r B 2,-), 50 (p - 2+ ,-], for 1 N Cp.

We will use the following particular case of Lemma 3.1.

Corollary 3.1. Let u. 0 2,p(Q) and let N - 2. Then there exists a constant

C - C(p,IQI) such that

lug 4 CluIe
2p. V2,pQ)

N + 2
Proof: We take r - a = p(-- -) in Lemma 3.1 and verify that the common value of r

and s falls in the admissible range.

~-8-



Corollary 3.2: Let Q C CAT  and u G V 2p(Q). p > 1, Then for every cylindrical domain

Q such that Q' C Q

lu 2#Q 4C ulV 2p(Q)V2, p

where C depends upon p and dist(Q.Q').

Proof: Q has the form Q a G x (tlt2), where G is a region in 0 and

0 < tI < t2 4 T. Let K be a compact contained in G and set Q' C K x (t 1 .t 2 ).

Construct a smooth cutoff function o 6 C0 (G) such that W= 1 on K. Then

u' ; 2,p(Q) and

Iu UA2p,Q " c(p, jQj)nu A§ 2,p (Q) •

The corollary follows from the particular construction of W.

Next we describe the function spaces where v will be found.

Denote with J(Q) the closure in the norm of [L 2 (0))2 of DO(A), the space of

infinitely differentiable, divergence free vector fields 4, compactly supported in 0.

Let also J (0) denote the closure of V o(9) in the norm

m ;I11(a) - IIVji 1",a •

Set J( T) L2 (O,TjJ(Q))i Jl 01T - L 2(0,TIJ1()), 31,0() T C(0,TIJ(Q)) I JI(aT)I

JI(aT IN [W 2  (aT)1 2 r) J1(al~ N (a L (0,TiJ(M) r J (2T). Note that

S ( C 2 T and J~l0(T) V ( 0)]2.

4. THE WEAU PORMULATION

Let p W2'0T) such that .(x,T) - 0. Then multiplying the first of (2.11)

by o and performing (formal) integration by parts, we obtain

ff {-O(u)o t + V xK(u)*Vx o + vuVxUoldxdt =

T
(4.1)

- -f g(x,t,u)PdO + f O(u0 )o(x,O)dx
S 0(0)
T

-9-



where 0(*) is the maximal monotone graph

S • S> 0

(4.2) -(1S{ -, 0, . 0

as-L 8 < <0

The formal calculations leading to (4.1) are routine and we refer to (7, 121, for

details. Here we only remark that the jump of 0(*) at zero takes into account the

interface relation in (2.11).

Since the graph 0(-) is multivalued, 0(u(x,t)) has to be interpreted As a function

w(x,t) C 0(u(xt)), the inclusion being intended in the sense of the graphs. In order to

simplify the symbolism we will keep the symbol 0(u(x,t)), bearing in mind the way it has

to be interpreted.

Since u0 * 0 except on r, o(U (x)) is unambigously a.e. defined in 0(O).

To obtain a weak formulation of (2.5), (2.6)-(2.9), consider a smooth, divergence
4

free vector valued function * which is compactly supported in 0 1 (t) for all t 6 (0,T]

4
and *(x,T) 0 0. Take the "dot" product of (2.5)' by ; and integrate by part. in •

Routine calculations (9, 101, give

(4.3) ff (4 ;t + vV x 'Vx;- f(u);}dxdt . f vo(x);(x,O)dx
(2 t a (0() 0

Note that Q 1 is the set where u > 0o.

Definition: By a weak solution of (2.11), (2.5)', (2.6)-(2.9), we mean a pair (uv) such

that

(i) u 6 V2(
T n c(2T T)

(ii) v 6 ), -0 ae• on the st [u < 01 ((xx't) < 0)

(iii) u and v satisfy

(4.4) ff {-O(u). t + VxK(u)Vxp + (v.Vxu)o}dxdt - -f glxtu)odo + f O(u 0 )(x,0)dxgi ST  ((0)
aT ST W

for all 0 6 W such that o(x,T) B 0, and

-10-



(4.5) ff (..,. t VV x V. - '(U);)dxdt - f O(x4;(x )dxl
[u>01 a (0)

for all ''e i ' aT)such that V 4 0, ;(."T) - 0 and '-pp C*,t) C tu > 01(t).

IgEgakot Ui) Since we require ii to be continuous, the set Eu > 01 is open in the

relative topology of Q T' and therefore the last integral identity in well defined.

(ii) The integrals in the identity of the temperature are well defined, modulo some

basic assumptions listed below.

5 . ASSUMPTIONS AND STATD4ZVT OF RISUTS

With respect to the data g(x.t,u), uo(x), v 0 (), f(u) we eem*n the following

[All u 0C() * 0 s-Q. in 2(0), u0Cx) > 0, x e 01(0), ia0(X) -C 0 on 0a2(0)'

Moreover uois essentially bounded and

lu0 lot (0) 0 K

where It. is a known positive constant.

(A2] The function g(x,t,C) is continuous over S T R and satisfies the growth

c o n d i t i o n 
g X t C 4 O + I C

where K1  is a known positive constant. Moreover F 9 gx,t,t) is monotone at the origin

for all jx't) e I i.e. g(x,t.C)signC 0 0.

(A 3] With respect to X( *) we assume that C K(CF) is Lipschitz continuous in

ft\{0), it is monotone increasing, and satisfies

0<x0 4 I V ae \O

where X .- --1 IY1

[A 41 v0 (x) e JCO) and v0 (x) - 0 aeg. in 2 2(0).

(AS) f is Lipschitz continuous in R and

If~ I I( s ) - X K2~ In I a21



4

for some constant K2 and all s i e R, i - 1,2. We will also assume f(0) - 0. This is

no loss of generality since f(O) * 0 can be always be realized by addition of a

conservative force incorporated in the pressure term.

Let a - (a1,2) (#2 u (0)) x (N U (03), be a multi-index of length Jul - a1 + a2

Formally with D'F we denote the derivatives of F of the form

alai'
-F.

Also for O,n e (0,1) let Hl; ( T ) denote the space of those functions which

are aSlder continuous on compact subsets of UT with H61der exponents a with respect to

the space variables and n with respect to time.

We can now state our main result

Theorem: Under assumptions (A Il-(A5 ] problem (2.11), (2.5), (2.6)-(2.9) has a weak

solution. Moreover

Mi) u a L.(Q T

(ii) If K(&) 6 C7(i
-
) then u 0 C([u < 01).

(iii) If C * K(C) 0 C(3
+
) and if C + I(C) 6 C"(3) then for every multiindex a

D xu a I. (OT n [g > 0)

(a)

D u 6 Ho,/(a T Cu > 01), 0 = O(0) a (0,1)

x + v(x,t) 6 e(a n [u(.,t) > 01), a.e. t 9 (0,T]
' (b)

D xv L 6 ;T n [u > 01), for every a.

Remarks: (i) Assumptions [AI )-[A 2 ) are somewhat stronger than what is needed for the

proof of the theorem and have been formulated in order to simplify the arguments. In fact

the monotonicity of 4 + g(x,t,&) at zero can be relaxed, and on u0 (x) one only needs to

assume u 0x) L2(0(0)). We will indicate later how this can be done.

-12-



(ii) If in (2.11) the variational boundary data are replaced by

uls ? - h(xt), (xt) e a?

then we have a Dirichlet problem whose weak formulation can be derived in an analogous

way. However, it is necessary to take test functions 0 9 1' I (a ). The proof of the

theorem carries over to this situation, modulo the obvious changes due to the different

nature of the boundary data. We omit the details for the Dirichlet problem.

6. PROOF OF THS TKNOIRU

The plan is to obtain the solution u.v as a limit of nets (u ¢, (C ) solutions of

certain approximating problems solved in all T". Since v must act ultimately only on

the set (u > 0, we introduce in the approximating process a penalization acting, roughly

speaking, an Cu IC 0).

Let C > 0 be fixed and consider the problem of finding a pair (u ,v¢),

u V2 (A T), v a J ( T ) satisfying

JJ(-O 4Pu¢ t + VxK(u C)'Vx 1 0+vVxuC0}ddt-

(6.1) T-

- g(xot,u,)%' o + J 0(uo)o(x,O)dx
ST 

0

for all 0 0 W2'
t 01) such that P(x,T) 0 0, and

2 T

(6.2) II+ VV * 'V + Ci 5 (u5 )v5  l(u 5 );)dxdt *- f,(x)(x,O)dx
T

for all 6J (1l lT 0. Here C1H1 is a penalty term defined by

-13-



H fa I -2 *H6Cs) - -6 ls - 1 , -26 < s ( -€

j0 , -E <( 5 *
0 8

and v 0 (x) here is the extension of Vo(x) via a into a2 (0).

The crux of the matter lies in the proof of the following facts.

Provosition 6.1s For all C > 0 the system (6.1)-(6.2) admits a solution (u61 v6 ).

Moreover there exist constants C01 CVC 2 depending upon the data in assumptions [A 1 ]-[A5 ]

but independent of a such that

(a) Iu 5 IV2(aT)I , I I ( CO

2J T

(b) 1 fft
( b)11 f H ( u v I dxdT 4C C1

T(C ) lu el .', T C C 2 *

For every compact K C 0 T , there exist constants C3 , C4  depending uon K and _,

such that

Cd) l' uzl 2,K < 
C3(K,€)

(e) I CC(KC)

(a aV',K 4 '4(Kc

Proposition 6.2: The net [u.) is equicontinuous over 2T th&t is for every compact

K C DT, there exists a nondecreasing, continuous function UKC") : t + +

(aK(0) = 0, dependent on dist(K,
39
lT) but not upon 9, such that

iu(x,t, ) - u(x 2 ,t 2 )i 'C wK(1x 1 - x 2 + ItI - t2 1/2)

for every pair (xi,t l ) e K, i - 1,2.

By Proposition 6.1, the nets {u) , are weakly compact in W 1  ,
0
(0 and

2 T

i a respectively. Hence for a subnet relabeled with 9

-14-



*e u weakly in V2 1, 0) and

P2

v v weakly inJ()

By proposition 6.1(c) and Proposition 6.2. the net (Us) is equibounded and equicontinuous

on every compact K C " Therefore a subnet can be selected and relabed with C such

that

u¢ u uniformly on compacts K C T

and consequently

u1 * u strongly in L2 (OT )

Because of the equicontinuity of (u.} the uniform limit u is continuous in 0 Tr and

therefore the set (u > 0] is open in the relative topology of .

The proof of these propositions is lengthy and technically involved. We postpone it

to the next sections and show here hoy to conclude the proof of the theorem, using theme

facts.

16.A). The identity of the temerature.

Since (u.) is equibounded in 9T, from the definition (4.2) of the graph B, it

follows that the not (B(ud) is also equibounded in 0T . Therefore the selection of

subnets can be made in such a way as to insure

O(u) + w weakly in L2 (QT)

By monotonicity of O(e) we have w c O(u) in the sense of the graphs. As before we will

write 6(u) instead of w.

By the trace theorem C14), for every n > 0 there exists a constant C(11) such that

f lue - u 2  f ntv"u u)t2  +C()IA -1 2

STC 2aC 2,2
- .T ()t - 2,T.

Since the norms IVx(u - u)1 2029 T are equibounded and u. + u strongly in L2 (T) the

above implies

u5 + u strongly in L2 (ST)

! , -IS-



and consequently in view of the continuity of g(x,t,u)

g(xotu C) + g(xtu) strongly in L 2(ST

By assumption (A3 ] , the definition of K(o) and the equicontinuity of (u ) over compact

subsets of 2T it follows that {K(uC)} is equicontinuous on compacts K C O and hence

the selection of subnets can be made to include

K(u ) K z(u) uniformly on compacts K C 'IT

Consequently

K(u * K(u) strongly in L2 (%)

Now we also have

VxK(u 1 + z weakly in L2 (O T )

Letpe C ( ). Then

OTT
ff VKu,, ddt - -ff K(u,,)V~'dt

and letting C + 0

ff/z -- ff K(uV XPdxdt
'T 2T

This implies z Vx K(u). For the nonlinear term involving v in (6.1) we have,

f °i (VT u +tx.
ffV £ X ucfxd - -f Vudt*-f *~dd -Cf .Vudxd

for all 0 e wI

Finally, letting C + 0 in (6.1) we obtain the identity (4.4) for all e w 2 1(O)

such that O(x,T) E 0.

[6.D] The identity of the velocity

Let K be a compact contained in the open set [u ) 0). Since ut + u uniformly

on K, there exists % > 0 so small that u,(x,t) > 0, V(x,t) e K and all c < to.

Let ; . (aT)D (xT) = 0 and supp ;(*,t) C K, then for the term involving the

penalization in (6.2) we have

-  f(u.C )v Cdxdt -0 V C < Co

K .

-16-
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Lotting c + 0 in (6.2) with the indicated choice of ;1 and making use of

proposition 6.1, we obtain (4.5). As K C Cu > 0] was arbitrary, we obtain (4.5) for all

such 4 with s-pp ;(.,t) C [u > 01(t).

It remains to show that v 0 Ae.G. on (u < 0.

By Proposition 6.1

R i H5(u )I l
2dxdT 4 C,

CT

Let K be a compact contained in [u < 01. From the uniform convergence of uC to

u, it follows that there exists cK so small that HC(u 5 CEl on K for all C < CK ,

Therefore

I I°gI 2dxdT 4 CC
K 

1

Letting e + 0, by lower semicontinuity of the nor& we obtain v = 0 a.e. in K, and

since K C Cu < 01 is arbitrary, v - 0 A.A. on (u < 03.

16.C] Reqularity

Statement (1) will be proved in Proposition 6.1.

(ii). On the set Cu < 01, v a 0 a.e. Therefore the temperature satisfies

u - AK(u) - 0

in the sense of distributions over lu < 0). Note that here we have used the definition

(4.2) of the graph 0(*). For every cylindrical domain Q C (T  C (u < 01 we have

1,0
u a V" (Q), Therefore if K(.) is infinitely differentiable on (-,0), the statement

is a consequence of classical results (111.

(iii). On the set Cu > 01, u, v satisfy

u- AK(u) + V u - 0

vV- + V =p I 1(u)

in the sense of distributions over (u ) 01, for a measurable function p. Moreover for

every cylindrical domain Q C Cu > 01 we have u 0 V 2
0

(Q). and by Proposition (6.1),

u 6 L.(Q) and 0 [L 6 (Q) 2 . Hence the stated regularity follows from the results on the

-17-



local smoothness of weak solutions for the bidimensional Soussinneaq system established in

7. PR0OF OF PROPOSITION 6.1

Denote with 0 (*) a sequence of smooth functions in R such that 0 (s) B(s)

Is 
U

over compact subsets of R\O) and satisfying

(i) 0 are monotone increasingn

(ii) B(s) ) 1, V a 0 R

(1ii) B (s) = for s ), -1 and B (s) - s - L for s 

Such a sequence can obviously be constructed.

Let also ( }O,M be a sequence in J1 (0) such that

,0. + ' 'o in V

We fix C > 0 and for each m a I consider the following
1,0 )

Auxiliary Problem: Find u a V , v a JI,1(2T ) satisfying

(7.1) ff { Cu m)P t 
+ 

Vx K(u a)VxV + v *V xu ,.o)dxd
T 

-

T

f " f g(x,t,ua)-do + f B(u 0 )(x,O)dx

ST  a

V 0 e 1 w ) such that v(x,T) 0

(7.2) - + Vxv.V + -)

(7.2 ff * XE X H
T

-f~u m ) dxdT f *I 0, -(x,O)dx

V ; e (QT) such that (x,T) S 0

We make the convention of denoting with C a generic positive constant depending upon

quantities that will be specified as the constant appears.

-18-



Proposition 7.1: For each m 0 N the auxiliary problem (7.1)-(7.2) has a solution.

Moreover there exist constants C depending upon the data in assumptions (All-[ASI , but

independent of a and C, such that

(7.3) ,UVmI V2 (QT) IV I C
JO1UT)

1 f

(7 II (u )lv jdxdT C

Proof of Proposition 7.1: We employ a Galerkin procedure. In L2 (Q), introduce the

orthonormal basis (z (x)) generated by the problems

-Az i z in A

as i
T = 0 on 30

In J(2) we introduce the orthonormal basis generated by the Stokes problems

-4C i + Vp - U i in A

-0

0

V. t a - 0

where P is a scalar function representing a pressure. Prom [10,131 it follows that

Ui} form a complete orthonormal set in J(Q). By fHilbert-Schmidt theorem [131 we see

ii
that any smooth divergence free vector valued function ni, compactly supported in A has

an absolutely and uniform convergent representation

l(xl -i=1 0 ' Ci)L2 (a) CX) "

4

Moreover the derivatives of n(x) have an absolutely and uniformly convergent

representation obtained by term by term differentiation.

-19-



We represent the initial data uolx), ox) as

Uo ) (x c 0 W

Vo0Cx) - d cis1 x).i 1

V W d0 W

For i 6 3f fixed set
*(7.5) VI(x,t)- di*(t)C* i(x)

i-i

and denote by W.,s(xt) the unique solution of

(7.6) TV "a,- ( ( ) a V

(7.7) -Vx K(B-(W,&)). - g(x,t,_3
1(Wm,)) on s

(7.8) We,t(xO) " VP(x)

in the sense of projections over the span of (z1,Z 2 ,...,s}, where

vLLx) - c, zi(x)

and

80 (uo(x)) - csi(x) 
i)1

Namely denoting with PX the L2 (a) projection onto the linear span of {zi*Z21....z1,

W is the unique element in W2'1C( ) satisfying (7.8) and
3,12 T

./ { Wm P + xK(;'(w.,,))'Vxpl +
il {VP10 + VXK(aQ. +

(7.9)
+ !'

1 I5 1 P~)dxdt - f (xt5 3  (W~)~d

2 T

-20-



for all p 6 wV(), and all t e 10,T).

For the construction of W (global in time), we refer to (2,3,4].
We will employ the function W so obtained to construct the function v solution

of
-. * - -1 [.L) ±( -1

(7.10) -vy +C HCA (V) .* in%

(7.11) vt(xt) - 0 (x,t) 6 ST

it

(7.12) vt(x,O) I I i i2
i-1

In the sense of projections over the span of {*amly denoting with *t

the J() projection onto the linear span of (+ , .... +, is the unique element

in J'1(M T ) satisfying (7.12) and

f 133L; ;'t at + v wA; +

xi xIt

(7.13)

+5H ' ( W1(.,,)),.I},;dx - f h0 1 (W.)Z

for all ;e J1() and for all t e (0,T].

We Gait the proof of the existence and uniqueness of vA satisfying (7.10) since the

construction follows by straightforward modification of standard techniques (10,91.

Denote by Lm[0,T ]  the space of essentially bounded real valued functions in

[0,T], and with I [0,T] the space of those square sainable real valued functions

t + d(t), whose weak derivative d'(t) is square saunable over [0,T].

For A e 9 set

X (L.[04T]) , the cartesian product of L([0,T ]

by itself I times

Y= (H (0,T]) the cartesian product of H [0,T]

by itself t times.

-21-



In X and Y introduce the norms

£0

Id (*),d 2 (.),...,d(*)1l 2 ees sup E ld.(t)1
2

04t4T i-1

d t 2

Id 1 l* 2 )0 ii + ( IdI0
1ldYJ1 i 2,[O,T] [ ,O,T|

The procedure described above defines a map F Xt + YL as follows. Given an

L-tuple d2(t)d(t) .... d;(t)} Q XL w construct WLC(x.t) the unique solution of

(7.9) with given by (7.5). Then we associate with (dl(t)jd Ct),...,di(t)), the

Fourier coefficients {d 1 ( t , d  t ) , . . . , d (01 of the solution (x,t) of (7.13).
1 ), 2 Ct 1d~) V,t

We need to show that for each L s Y, FL possesses a fixed point in XL.

This can be done by using the Leray-Schauder fixed point theorem [10]. For this we

have to prove that

i) Fi  maps a bounded set B in X£ into itself

(ii) FL : a B is compact

(iii) The set of solutions of XF I(x) - x, X 6 [0,1] is bounded independently of

Lemma 7.1: There exists a constant C which depends only upon u(x), Q T' L, the

constants in assumptions [A,1-[A 51 and which is independent of £, A, L, I such that

1W l2( °,t)i 2 ,0 4 C, all t 6 [0,T)

Moreover setting (W ) = Um,L, there exists a constant C dependent on the previous

quantities and independent of C, m, L, v such that

(7.14) l~~~u (*)1 2  +fIV (-T2t610T

(7.14, m,L 1( 2 Q 0 x mL 2 ' dT 4 C, t 6 [oT

Proof of Lemma 7.1: The proof is exactly the same as the proof of Lemmas 1 and 2 of [4].

Here we only show why the constants C are independent of vt . The lemma is proved by

setting in (7.9)

p-2 - Wi,
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L

and performing estimates in the identity so obhained. For the term involving v', we have

f~a' )V dx - f BV *d(dx

- U f M, 1 01C()dC]div v)ddx - 0

Lamma 7.2: (a) There exists a constant C which depends upon the constants in Lemma 7.1,

the Lipschitz constant of 1(0), UT, W0 (x) and which is independent of C, m, Z, v

such that

2 t
(7.15) Iv 1(0,0)E2 a+fI *Lg~ a 4 (Ci t e (0,T)

0

(7.16) 1 1 'H(U )I I dxdT 4 C

(b) There exists a constant C which depends on m, C, I* l(, but which is

independent of 
A such that

(7.17) C vti 2 ,% 0c(mE)

Proof of Lema 7.2: To prove (7.15) and (7.16) choose I v in (7.13). To prove
Lrv

(7.17) choose AI a P . The lemma now follows from routine calculations and Gronwall'sA t"

inequality.

Now (7.15) implies

Ed (0)12 4 C, for all t e 10,T)

and therefore if (d j( belongs to the ball of radius C/2 in X we

have

F d d) e the ball of radius i/2 in x .

In fact by (7.17) (diod 2 .... d F(d,d *,...,d* e Ye and Y is compactly embedded

in X .  Therefore F is compact. The continuity of F is demonstrated by a standard

difference argument, and condition (iii) is trivial (see (5) for similar arguments).

-23-
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Hence we conclude that FA admits a fixed point in x and actually every fixed

point lses in Y." Lot VI be a fixed point of F and set

U a,. IL B(Wmt)•

Then m,, U 1 , v satisfy the identities

1718 jj + V K( m,)V P 0 + *£.V U ,P v}dxdt g(x~t,U 1 )P Pdo

for all o 6 iwI(a ) such that V(xT) E 0.

2 T

ij t v'~ +. VV; : aV1 +

foT 
al x 8

(7.19)

+ C EC(U ,)vn.yIdxft - f (U a;dxdt
9T

for all a * 3, (T) such that *(xT) 2 0. Here a is a positive integer A. Now we

let A + while m G remains fixed.

The limit process of A + * in (7.18) is carried out exactly as in (41. We remark

that a crucial fact in this connection is to show that

U 3 1 * um strongly in L 2 T )

(7.20)
Wm, w BeCUrn, weakly in L (OT )

a m (ua 2

These facts were shown in 141 to which we refer for details.

The passage to the limit in (7.19) follows the arguments of (9,101, by making use of

the information (7.20).

Note that by lower semicontinuity of the norm the estimates (7.14), (7.15), (7.16),

(7.17) are still valid in the limit. Proposition 7.1 is proved.

7-(a) Regularity of u, and v

Next we give an equivalent formulation of (7.1), by using the Steklov averagings of a

function P 6 V2 ( ) defined by
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t+h

10 t > T -h

In I11) it is shown that (7.1) is equivalent to

(7.21) If ( (+ (-.))h, * V (K(u )jhV + . a Vxu ah dx4T - f (9(x,t,u.)3h)hd
a t 

St

for all 0 t T -h,

and
(m~ x,Ol) a (mUo0 W),

for all oe 0 (a).
2 T

Leas 7.3s There exists a constant C independent of c, such that

as$ sup Iumt a C a m 1,2.

Q T

Proofs Let k be a positive real numer such that k ) fax luo )l , }, and consider

the function - filO

0 ( u~l k ) + - max(( W~ h - ItO}

It is immediate to verify that 0 a W I'(O T) and therefore it can be used as a test
2 T

function in (7.21). We obtain

{ it(fw (u )lh k)+]2 + V EK(u)jh.Vx([Sn(u) h - )+ +

0 ih x mhx aah

(7.21)

+ (* Vxu aIh
1  

C0(ua )]h  - k) - tg(xlu ,,](h (0 u) - k)+do
s 
t

We perform an integration by parts in the first integral and let h * 0. exploiting

the fact that (and hence (u)) belongs to V 
1' 0 (0) [11). This gives

-22-
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1 ( (8(u) - k) 
2
dx + ff VxK(u )*Vx(0 (u) - k)dxdT +

2g(t) m a

(7.2)+ (f v Cu Vx - k)+dxdT -f g(xtu M u a -Ua ) dO

t t

+ f (u0 x) - k)+2dx

By our choice of k, the last integral in (7.22) is zero. we treat the remaining terms as

follows. First observe that by our construction of B C.) we havem

(s) s for s > Ia U

I + Is

Therefore since k > - we have (0 (u) - ) -u -Ic) From this and routi.,e

calculation it follows

ff VxK(u)°x(V (U) - k)+dxdT - If K'(um )IV (u - k)+1 2dxdT ; 0
a t a t

For the term involving the velocity we have

ff +Vxu (Cu) - k)+dxdT - ff vV (u - k)(u - k) dxd?-

t t

1 +2
= f- +) 2 dxdT - 0

t

since div v - 0.

By monotonicity of g(xt.u.) at the origin

g(x,t,u m u - k)
+ 

; 0

Carrying these estimates in (7.22) and dropping the non-negative terms we obtain

f (u -k)+2 dx 4 0 a.e. t 0 [O,T].
Ul(t)

This implies u (x,t) 4 k, a.e. (x,t) a OT. The bound from below is derived

analogously. By taking
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k - max{O, sup 10M(u 0 )
3.4

the constant in Lamma 7.3 is made independent of m.

This result will be employed to prove the following lama

Lemma 7.4S Let K be a compact of U " Then there exists a constant C depending upon

dist(K,UT ) and C but not upon m, such that

TA I~am, C(c,K), m " 1,2. .

Remarks Lsma 7.4 says that the sequence [v m}  is uniformly bounded on compacts of aT .

We stress the fact that the bound does not depend on a, but depends upon the size of the

penalty tem C- IH C(um) (and hence upon C). Also there is no claim of uniform

boundedness of v over all UT but only on compacts K C UTM Te

For each m e3 we define the vorticity (aa of v as the skew-symetric tensor

(f j) of entries

- 3.: Cvi) v(j) I

m " M - " 0) iJ - 1,2

Let G, G', G* be regions in 0 such that G C G, G C G, C , and consider the

cylindrical domains

Q B G Xt EtA2 )1 Q1 =- G1 X Et ;t2]l Q" 3 Go X ft;,t 2]

where 0 < t 1 < t; < t; < t 2 C T.

The following local representation of v will play a role in what follows.

Lasm& 7.5: Let x + r.(x) e C0 (G) such that C(x) 
= 

1 on G*. Then

(7.23) C (x)va(xt) - f (y)V li(x - y) A (5(y,t)dy + A(xt) ,
G

where H() is the fundamental solution of the Laplace equation and for x e G", A ,')

is harmonic in x and l c(0,T), uniformly in m.
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Proof of Lemma 7.5: Assume first that v eC T). Then from -AH(x - y) - 6 In

D'(R2), where 6 denotes the Dirac mass concentrated at x, we obtain
x

C(x)v M(xt) " .2 V H(i, - y..V YCy)VCW.(y,t)]dy
aR 2 y I

2 a M Ci

I f C(Y) H(x - y) v (y,t)dy + f [VH(x - y).VC(y)]v (y,t)dy
j I G jY- hj G

-f C
(
y)V H(x - y) A w (y,t)dy + A( )x,t)

G y' a a

where

I (x,t) - f CVH(x - y)*VC(y)]v(C)(y,t) - f 4- H(x - y)VC(y)*
4
C(y,t)dy

aG G i

By a density argument this representation holds for v e . "(T) . Because of the choice of

the cutoff function C, A is harmonic in G' and Ij1 COT) uniformly in a.

Remark: Such a representation is similar to Lm1a 2 of (18]. The point here is to point

* boc
out that since A. is harmonic in x e G" and ° C(0,T) uniformly in m, we have

e + loc 2
D e % [ ( ), uniformly in a

The bounds will depend on dist(G%.Go), the constant in (7.3), and the multi-index a.

Proof of Lemma 7.4: Since v satisfies (7.2), denoting with vab a mollification of
4h

v there exists a differentiable function Pm,h such that

(7.24) Ft- a f h - VA mh " -V.m,h +  a() £ H m()v.)h

in T  (see [8]).

By taking the curl

(.25) 1t Wmh M,h -curl[f(u. ) - C'H C(uI)YN]h in T

We already know that u5 e L(CT) uniformly in m, and that v e i ( T) uniformly
m~ T1aI?

in a. Consequently setting

a f(un) -0 H C (ua)V*

V
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we have

0mh e L2 (Q) uniformly in a and h,

and there exists a constant C(C) depending upon ms supIumI, the Lipschitz constant

K2 of f() in (&]) a TI v 0(x) and 9 much that

1 h 12,0 T 4 C(), V m,h

Construct a cutoff function (xet) + r(xt) e C(Q), much that r.(x,t) i 1 on ',

S-xt1) = 0. x* .(x,t) e C0 (G) and 0 4 C I 1. Then mh C2 e C (Q) and vanishes on

the parabolic boundary of Q. Multiplying (7.24) by 0h2 and integrating over Q,

after standard calculations we obtain

(7.26) ego sup Im 2 + 11V N mrCI 2 (9  2 +  IN 1h2

t Ct ,h'2,04(t) x m,h 2,Q m~h 2,0 T ,h 2,0T

for a constant C, depending upon c, dist(QQ' the data but independent of a and

h. Since 6 J (1T) uniformly in a we have that W0 e L uniformly in a
a IT U. h 2 0T ufo lyi a

and h. Therefore from (7.26) recalling the definition of the cutoff function C;, we

deduce that there exists a constant C(c) depending upon C and the data but independent

of a and h such that

(7.27) tomhV2 I C(C)
0, h (Q) 'CC

Corollary (3.2), with p - 2 implies that w e L4(QO) uniformly in a and h.
mh 4 ~ nfrl nmadh

Therefore since the choices of Q, Q1, Q* are arbitrary, we deduce that w e L4oc( )
Is 4 T

uniformly in a, with bounds depending upon e.

From the representation (7. 2) and the Calderon-Zygmund theory of singular integrals

[201, we deduce that

* bcV e Le (OT) uniformly in m,ONE

x-29



* locand therefore v 6 V2,4(aIT) uniformly in m. By Corollary 3.2, with p - 4 we find

+ lov a e Li (OT ) uniformly in m. Now lotting h 0 In V101 T ) in (7.25) we have

(7.28) aW- - VAW - curl(# ) in DI(l)at a I a T

From (7.27) we see that w is a solution of (7.28) which belongs to V2 °c(a ). Sine

#m e LC (2 T ) uniformly in m, standard parabolic theory [11, 16, 171, implies that

Se ° (a ) uniformly in m, with local bounds depending upon c.

The lema is now a consequence of the representation (7.23).

100Finally we employ Lamma 7.4 to show that um e L2 (T).

Leaas 7.6: Let K be a compact of T" Than there exists a cbnatant C depending upon

dist(K,3%,). T and the data, but independent of a such that

a '
T-t %IL 2 (K)

proof of Lonma 7.6: Let x C K 2C 2) be compacts and consider the cylindrical domains

Construct a cutoff function p(xt) e C7(Q 2) such that

(i) supp P C Q2

(ii) w z- 1, (x,t) e Q,

Next consider identity (7.21) and set

K(u m ) - z3

and

ym )- ( z It M( m))

It is clear that by virtue of the assumptions on WC') it will be sufficient to prove

It zml1 2, K 4 C .

-30-
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0.

In (7.21) with the indicated change of variable, choose the test function

Since supp o C Q2, the term involving integrations on ST  drops out, and we have

Q2 1- ( 2

(7.29)

+ V Vz1  02 2 tL~~JX~

Consider the first integrand in (7.29) and recall that by virtue of assumption EA3 ]

and the construction of the sequence s (e) we havea

Vs) - _tK (- ls)).K -1(a) ) A,1 s 6 R\O).

now from the definition of Steklov averaging it follows that

3l a Y (Sa(t + h)) - ym(xm(t)) zm(t + h) - zm(t)
(m h T- (ah " h h

2

( t + h) - .(t) 2 2
Sh * -11It 3 z 2

For the term involving gradients we have

,' V xtah Vx !z1'e2 dxdt f 2 1P I 2 dxdt

a T- . aVx23 l F dxdt ,

2 Q2
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These remarks in (7.29) give

X1 JiI s C 1 0 2 dxdt - f IVIt[1 1 2 3 - dxdt - 2 a V t Iz I PV
I 2 ah2Q h T xt - Q2 xsm h m

(7.30)

- I* [m(-V '(zI)]h( z Jmh)0 2
dxdt II + 3 +3Q2

We estimate the It, i - 1,2,3 separately. From (7.3) it follows that the

integral 1 is uniformly bounded with respect to a and that the bound will depend on

t, i.e. the distance eten Q, and Q2"Jj. beteen an

As for 12 we use the Cauchy inequality ab < na + b 21 > 0. to obtain

Is21 iiff 1202 + ~ ff IV( hI2V"PI2dxd t
Q2 Q2

We do the same with 13

as 12 2zIdxdt +.I ff I1*VX -1h12 211 3 4 ffIrt [aa Ih 4 k ¢m'V x K' (a a)) hi2
Q2 Q2

Carrying these estimates in (7.30) we obtain

[A 1  2111 11 I- I 1202d dt 4 C(M) ff IV Ih 12IItI + IVxOI2ldxdt +2 mQ2

+ 1 S It (VxK-' (Z )1h 2 2
Q2

Since we have previously shown that vm  is locally bounded independent of a the last

integral is uniformly bounded with respect to a. Finally we choose n = A41/4 and recall

that 'P I on Q1. This yields

C I., dst(Q 1.Ql),IV x u m1,9

t1znl', C ' 2 T

Since this estimate is independent of h, from a result of [111 it follows that the weak
a:

derivative T- exist and is a localty square summable function in AT* The lemma is

proved.
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Remark: We stress the following two facts
au

(a) T 0 L2 only locally, uniformly in a.

(b] The a-priori bound

au
IT 4 2,Q eCI c( ,,Qdist (K.39T),IVxua12,0

does not depend upon m, since v I Q2and IV u are bounded independently

of a, but does depend upon C via I I'
~[

7-(b) The limit as a + -

We now conclude the proof of Proposition 6.1 by letting m 4 in (7.1)-(7.2). Prom

(7.3) it follows that the sequences (u }, (v ) are weakly compact in WI (a ), and
a a 2 0 T'an

J I(a) respectively, hence subsequences can be selected and relabeled with a, such

that

U * U weakly in WIt
0
( )

vi a v w weakly in JI(S T )

Lemma 7.11: Let e > 0 be fixed. There exists a subsequence (relabeled with m) such

that

ua u¢ strongly in L2 (aT)

Proof of Lemma 7.11.

Let K be a compact of 0T  Then by Lemma (7.3) and (7.11) we have

au

+ I CM
a mlK T -2, K 

+ IVxUm| 2 ,K

where C depends upon e, diat(K,Dg T) but not upon m.

Therefore for a subsequence

u U. strongly in L2 K), and

u u a.e. in K

Now by the uniqueness of the weak limit u. we have

U- - , a.e. (x,t) 0 K
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Let Kp a sequence of compacts of 0T such that Kp CK and U K . a Thenbya0np1 p)1  - T h b
diagonalization process a subsequence can be selected and relabeled with m such that

U m u a.e. in CT 

Since |u a IM, is equibounded, by the Lebesque dominated convergence theorem we have

u u strongly in L2 ( T)

By the trace theorem and (7.3)

trace u * trace u: . trongly in L 2 (ST)

and by monotonicity of 0(.), B (u ) + w 0 B(u) weakly in L2 (aT.

Leasma 7.12: For a subsequence (relabeled with m)

V *V. strongly in .(G).

Proof of lama 7.12. A consequence of Lema 7.11 is that f(u) f(uE) and

Cu) * H (u) strongly in L2 (0T ). Therefore since the space dimension is N - 2 and

9 > 0 is fixed, the strong convergence of vm to VC follows by a straightforward

adaptation of Serrin's stability theorem (Theorem 6 of [191 page 83).

We can now pass to the limit in (7.1), (7.2) as a+* (for m labeling the

+particular subsequence chosen above) to obtain the existence of a pair u ,v,) such that

(7.31) IUCIV2T) ,  IVC I . C0

2TI (QT)

where the constant C0 does not depend on 6, and uy satisfy

(7.32) /f (-0(u)o t + xKluc )Vx + V CV x }u 'dxdt -f g(x,t,ulPdo + f B(u 0 )O(x,O)dx
T ST T

for all V 0 w2'( () such that P(x,T) - 0, and
2 T

ff (- -;t+ V : + t-H (u) 4l.dxdt=
C t XC C C

T

ff f(uC) dxdt + f V0 (x);(x,O)dx
nT

for all 6 1J, (a) (xT) 2 0.
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Statements (b)-(e) are obvious from the estimates we have established in Lemmas 7.3,

7.4, 7.10, 7.2.

8. PROOF OF PROPOSITION 6.2

Since the modulus of continuity has to be uniform in 9 we start by listing the

estimates that we have which are uniform with respect to C.

First

(8.1) IUasaT C 2# V e > 0

Next

(8.2) luIV2(a T I* lvi 2( T CO

From the second of (8.2) and Corollary 3.1 we have

(8.3) vI4,, (Const independent of C)

Also the qualitative information in (d) in Proposition 6. i is essential in order to justify

some of the calculations below, but the modulus of continuity will not depend on the local

estimates for I a u I2 ,K

The function w (.) claimed by Proposition 6.2 for K C 0 T will only depend on the

quantities listed in (8.1)-(8.3).

In this section the restriction N - 2 will play a dramatic role. The flow of the

proof is like the arguments produced in 17, 8]. Now the order of summability (8.3) of v

is not high enough to fulfill the assumptions of Theorem I of (71. For this reason a

modification in the proof is needed where we will exploit both the dimension M - 2 and

the particular structure of the equation corresponding to identity (6.1).

Since the arguments have been presented in detail in (71 we will limit ourselves to

pointing out the differences that occur at various steps in the proof.

The main idea will consist Ln showing that given (x 0 t 0 ) a aT r we can construct a

sequence of cylinders Qn Ocentered" at (xo, tO), such that Qn Qn+1 and shrinking to
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6.

No0t0) where the oscil)ation of u. decreases, according to the operator associated

with (6.1) and in a way determined only by the quantities in (8.1)-(8.3). Given 1 > 0,

this process will also prescribe the size of a cylinder Q(11), where

ess sc U£ < no V C > 0.
QMq

This will obviously yield a modulus of continuity for u¢ over compacts K C "To in an

uniform fashion with respect to E.

[S.A] Preliminary material.

Pirst we report a result of (11I which in our context can be stated as follows. Let
1,1

u€  satisfy (6.1) and u a W (T). Then u satisfies the integral identity
eC 2:,loc(I) E

t 2  t2 +

(8.4) f O(uC )(Xt)dx I f j I f-o(uc)0 t +V Ku E)V V + v Vu ')dxdt
a t t 1  a

for all 0 6 W2 (CT) such that x + V(x,t) is supported in 0 for all t Qt 1 ,t 2 ],

2 T lt21

and all intervals [tl,t 2 ] C (0,T]. We will consider cylinders contained in A T of the

following special for. Let (x 0 ,t O ) be an arbitrary point in £T and denote with

B(R) the ball {Ix - x0 1 < R) and with QR(e) the cylinder

S() B 9(R) x (to - OR
2 , t0 .

Also if Oita2 0 (0.1) we set

QR(OO12) B(R - 01R) x ItO - 0(1 - a2)R2,t 0

Consider the definition (4.2) of the graph B(,) and set

(8.5) O(u. -u + H(u I

where s + H(s) is the graph

0 , S> 0

(8.6) H(s) -L , 1.0

-L , < O0

In (8.4) we employ a test function p(x,t) supported in the ball B(R) for all

t Q It0 - OR2 ,t 0 1 where R and 0 are assumed to be so small that QR(O) C 9T . sy the

results of the previous section a u, 6 L2 (QR(0)), therefore substituting (8.5) in (8.4)
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and integrating by parts with the indicated choice of V we obtain the identity

t t
(8.7) f H( -)o(xt) 2 2 +

8(R) t0-6R t0 -OR 8(R)

t a

+ 2 f + V Xc(u,)V + vC u o'dud t 
= 

0

t o-(R B(R)

for all e '(Q()) and all t 6 [to - R2 ,t ] . The purpose of (8.7) is to isolate
2 R - 0

the contribution coming from the jump in 8(° ) with respect to the rest of the equation.

Next we construct particular test functions in (8.7).

Let (x,t) + C(x,t) be a cutoff function in QR ) satisfying

(W r(,t) 9 C0 (B(R)), IV x C (aIR)
- 1

(ii) ;(X,t 0 - eR2 ) B 0, X e B(R), 0 4 C t 4 (80°2 R2)

(iii) C(X,t) E 1, (x,t) e QR(0,0 1,a2 .

Let k 0 R and consider the functions

(u- )
+ 

= maxfu - k;O}

(u - k)- = max{-(u - k);0}

It is obvious that if u L ((0)), then (u - kdt e Ls(QR(8)), r,s > 1. It is

rK e (QR() 1

known that if u 6 W(Q1 1 (O)) then also (uE - k) e W2  (oQ (6 )), (Cf. [11]).

In (8.7) we will choose

S(x,t) - ±(ue - k)C 2(x,t)

For simplicity of notation we will drop the subscript £ and set

0 It- f(k ,tO  0 f H (u )(u -k ) j 2 (x~ t ) I 2

B(R) t0-OR

t *

-f 2 f H4CuH*(u - Ic) C 2(x,t)Y xdT
to-OR S(R)
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The remaining terms in (8.7) are transformed as follows

1 1 ±~ut~~(~~t T - -1 21 I~ [(,1_k)tI24 2 (x,T)dxdT

t0-OR B(R) t0-OR B(R)

= t-- [k)
2  1 t ~ 21ruk))Cxt)

2 f [(u'k)2 t2Cxt)dx -- " 2 f [(u-C)+]2 C(x,T) dxdT

B(R) t -OR B(R)

) 2 * /(u-k)~2 
BRt) - *(u-kc)i(Ct /2,RB

For the term involving Vxv we have

t t 1r
f 2f 'V K(U)V (u-k) 2dxdT- f 2 f K'(u)V x(u-k)u 2 2

to -R B(R) x x t0.-R S(R)

2 2K'(U)Vx(u-kY*Cu-k)IVxC . i. A 2 IV (u-k)-2R2 dxd

0t-OR B(R) toR B(R)X

t f IV ,.-k,)14X 2 )t,2
C f 2 ) 2

2d-dT - f .(u-k)* 2IVx C 2dxdt

0t -OR B(R)

.x - C) *o 2 f (R) IV(u - k) I 2 dxdT - (-u- '(u'k)*IVII2 R(e)

we treat the term involving the velocity as follows

-38-

.... " ...... .. ....:"" -I 111 ... ... ...i" . . .. .. ....... II ... ... ' ...." "" .... .. ... "i i i -* '" " . ... ...Ch. ...



1 f tv~v u[(u-k) )C (x,T)dxdT
t0 -OR 2 

S(R)

+ f 2' f *(V x INA)± 2 C(xT)dxdT
2t 0-OR D(R)

2 2 f vtu-k).t 2 V C dxdT
2 0-OR

2  B(R)X

Co abining these estimates as parts of (8.7) we obtain

I (u-k)tCI 2 , ()+X - C)ft 2 f IV,(u-k)tI2 C2 dXdT
2 B(R) 0 t 0-OR B(R)

l2  t/2,RO

+ tR 8(R IVCII(U-k)I 2dxdT + 0*(k,t)

22

the arbitrarity of t 0 It 0- OR , t0 1, to conclude that there exists a constant Y

depending only upon the data such that

l(u-k)±12  R 4 YI((aR)2 
+ (0 OR) 1I(u-k) I (8  +

(81,0 ,a )J 2,QRO

(8.8)

Y(O,R) 1 1 I*Vf(u-klt±2dT + sup 2 ~(kt0)
%R(O) telt 0-OR t 0
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Inequalities (8.8) are valid for every cylinder 9R(6) C OT, every pair 01 '02 a (0,1)

and every real number k. They are one of the main tools in the proof of continuity.

Another tool is the following logarithmic estimate.

(8.B] A logarithmic estimate.

Lemma 8.1: Let k 6 e, V ess sup (u - ) and 0 < n < p. Set

#(x~t) - In+[ - max In 0.
(xt '+- + m{n - (u - ) +

Then there exists a constant C - C(O) such that for all t e [t - eR2 
t0

f j2 (x,t)dx f f *
2
(x,t0 - eR

2
) + C (In-) seas B(R)

B(R-C R) B(R) 1

Remark: For simplicity of notation we will use the same symbol * for *(xt) and

;(u(x,t)). In what follows *' will mean 'I'.

In the cylinder Q,(O) construct a cutoff function x + F;(x) such that

i) C(x) C0 (B(R)), ivxCl < (a1 R)-1

(ii) C(x) 2 1, x 6 B(R - aiR).

Proof of Lemma 8.1. In (8.7) consider the following test function

i(xt) - 2O2 (z)

where x + C(x) is as above.

It is apparent that p 6 W"'I(Q.(O)) and that (#2), = 2(1 + #)(#.)2
2 •

Since (* ) vanishes at those points (xt) QR(e) where (u - k) + 
4 n and

n > 0, the terms in (8.7) involving ii(u C) do not give any contribution. The term

au
involving y- gives

t .j

f 2 1 u( 
2 )- 2 

(x)dxdT # f 2
(xT)

2 
(x)dx 2

t 0 -R B(R) (R) t0-OR

We estimate the remaining terms as follows
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f f K'(U)V U1(201 +)* }V 2~ + j# 'V C 2 dxdt
2 x x x

t 0 -OR M(R)

)A0 f1 2 f 2(0 + fl*)) x 12C2+
t 0-OR 8(R)

where

1 f C'u) dxdT -C 2Cf 2

t-R
2 8q(R)K(* *'x CV 22 -OR

2 B8(R)'

2+ !*,Vt 2dxdr

to-OR B(R)

For the term involving the velocities v C we have

2o 1V 2*21*2 + 'C 2ddT 'C

t 0-OR B(R) t 0 - 8(R)

24 f 2 (1 + #)(*,1 v--u i 2C #1*1 eI22

2 I 1 2- + f v 2dxdtr
t 8R (R) xCt 0-OR. 2B.(R)

Collecting these estimates we have

-*C 2 U-+( - 4) t f I+ 2 I l22Cx'

2 ;B(R) Ct 0 - 42f-OR 2 BCR) (14 )* VIIx dd

2 y 22
(8.9) f4 1*12 ( - OR) 2 .- ) + ~V dd 2

e'r0 t 0-0R2 (R)

2 21 *I 2C2drd.
2 t0-OR B(R)
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4 0
ow choose C - and observe that * I An -. Recalling the construction of we

4 hos

conclude that there exists a constant C depending only upon the data sael that

f *2(x,t)dx 4 f #2(x.to - eR2)dx +
B(R-80 IR) BCR)

(8.10)

4C n °hOR) 28R2 mea 3() • I!Si
2  ai

2 2 2 a

Since Ive 14,0 is uniformly bounded with respect to C and O as SMiX2 4

C (coast) seas (R), for N - 2, it follows froo.(8.10) that.

(81)f #2(., t)dx 4 f #2 (X,t 0  OR i2 )di +C (A.~ was B(R)
B(R-o R) D(R)

The lemma is proved.

Let us return now to the inequalities (8.8) and estimate the tem inavelvi velocities

as follows.

Set

,M1(1) (x B BR)I(u(x,) - k)t > 0)

and

N(k,R) = esa sup (u - k) *

Then

(O R "I1 ff [Iu1(( - k)*1 2414! •

Y(O R)- I (k,R)] 2 ff IIX( -k)* >0] xdT

where X(u - k)* > 0 is the characteristic function of the sot I(u - k) > 0a ) QR0).

We have

I IV'Ixl(u - k)> 0dxd? 4 [V4, ito Sa e * ( )3/4

(6) 4,9* t 0 -OR2 A4R 1
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Therefore, by changing the constant Y appropriately, (8.8) can be rewritten as

I(u - k)t1
2
1 0  C Yf' -R)'2 + (02OR

2
)' -I(u -

1 2,Q.(8)

V2 (QR(
O
'CI ,o2 ) ]

~~~~(8.12) { o : l/

+ Y(O R)'| [M(kR)1
2  

0.Ot 0 meas Ak (r)dT3 + sUp 2t * 0(k't
1t0 sit 2j, telt a-OR 2,t 0

Let us now show how to conclude the proof of Proposition 6.2.

In 17.8] we demonstrated that the existence of a modulus of continuity for weak

solutions of singular quasilinear parabolic equations in divergence form was solely a

consequence of inequalities (2.7) page 16 of (7) and lemmaa 2.2 page 19 of (7). Now the

analog of Lema 2.2 of [7) is precisely Lemma 8.1 here. Actually the structure of our

equation leads to a less complicated logarithmic estimate. We stress the fact that the

derivation of Lemma 8.1 employs in an essential way the fact that the dimension N is 2.

AS for inequalities (2.7) of (71, their analog here are inequalities (8.12). There is

only a slight difference in the term involving tM.

In (7) such term reads

to 2

f [ eas A .,R.,qd r (+))

t0o-Oa

where qer > 0 are linked by

r 2o 4

and K 0 (0,1).

Therefore I can be estimated by

(8.13) 1 < Conat R -R N

In our case the analogous term

I YO R [t0 oa :ta dT 3/4 (k,R)| 2
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is estimated as
(8.14) T, const [M(k,R)12R (N - 2)

Note that in this estimate too N - 2 is essential.

Finally let us show the difference between (8.13) and (8.14) does not affect the proof

in (7].

Let

+

i5s + s$up U; P -ess inf u

QRe Qjt(6)

so that the oscillation ( of u in (O) is

+-
WaI - P .

Inequalities (8.12) are employed with the choice of k given by

+ - I
2 a

or

k . "+--

2'

where a 9 N. Consequently, from the definition of (u - k)
t ,

M(k,Ri <

2
s

2

Now if (R", 1 2 ' the oscillation can be bounded with a power of R, and there is

nothing to prove. The case to examine is then when

:~! _ > NK/2
2 /

In [71 we estimated RN from above with 7,) and carried out the arguments with such
2

an estimate. Now this is precisely the content of (8.14) via (8.15). The term

[(k,R)1
2  

in (8.14) therefore plays the role of RNI in [7) when division by 2 is

2
carried out.

We omit the details (which are given in (7) noticing that our situation is in fact

easier due to the simpler structure of the equation. The proof is complete.
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Remark% The assumptions u0  L.(Q(O)) and "C* (x~t.C) monotone at the origin", were

used in the proof of lama 7.3. Now it is apparent from the previous arguments that one

only needs

U a !% ( independent of a and C

The latter can be proved starting from inequalities (8.8) with the aid of Theorem 6.2 of

(III page 105. Consequently one needs only to assume uO e L D(0)) and the monotonicity

condition on g(x.t,*) at zero can be relaxed.
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